Physics Help
Velocity
From Wikipedia the free encyclopedia, by MultiMedia 
Velocity
Velocity is a vector measurement of the rate and direction of motion. The scalar absolute value (magnitude) of velocity is speed. Velocity can also be defined as rate of change of displacement.
In both mechanics the average speed v of an object moving a distance d during a time interval t is described by the simple formula:

v = d/t.
The instantaneous velocity vector v of an object whose position at time t is given by x(t) can be computed as the derivative

v = dx/dt.
Acceleration is the change of an object's velocity over time. The average acceleration of a of an object whose speed changes from v_{i} to v_{f} during a time interval t is given by:

a = (v_{f}  v_{i})/t.
The instantaneous acceleration vector a of an object whose position at time t is given by x(t) is

a = d^{2}x/(dt)^{2}
The final velocity v_{f} of an object which starts with velocity v_{i} and then accelerates at constant acceleration a for a period of time t is:

v_{f} = v_{i} + at
The average velocity of an object undergoing constant acceleration is (v_{f} + v_{i})/2. To find the displacement d of such an accelerating object during a time interval t, substitute this expression into the first formula to get:

d = t(v_{f} + v_{i})/2
When only the object's initial velocity is known, the expression

d = v_{i}t + (a't^{2})/2
can be used. These basic equations for final velocity and displacement can be combined to form an equation that is independent of time:

v_{f}^{2} = v_{i}^{2} + 2ad
The above equations are valid for both classical mechanics and special relativity. Where classical mechanics and special relativity differ is in how different observers would describe the same situation. In particular, in classical mechanics, all observers agree on the value of 't' and the transformation rules for position create a situation in which all nonaccelerating observers would describe the acceleration of an object with the same values. Neither is true for special relativity.
The kinetic energy (movement energy) of a moving object is linear with both its mass and the square of its velocity:
The kinetic energy is a scalar quantity.
Physics Help, made by MultiMedia  Free content and software
This guide is licensed under the GNU Free Documentation License. It uses material from the Wikipedia.
VEVO Music videos. Gallery shows artist selections, however selected video must be played on youtube (link provided).
Adele
Beatles
Belinda
BonJovi
Cee Lo Green
Earth, Wind & Fire
Eric Clapton
Hiroshima
Joan Osborne
Kanvaz
The New Kanvaz
Kenny G
Lauryn Hill
Miranda Lambert
Maroon5
Nirvana
Obituary
Phil Collins
Primus
Selena Gomez
Simply Red
The Band Perry
Tina